(9x^2-7x+5)-(12x^2-5x-6)=

Simple and best practice solution for (9x^2-7x+5)-(12x^2-5x-6)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (9x^2-7x+5)-(12x^2-5x-6)= equation:



(9x^2-7x+5)-(12x^2-5x-6)=
We move all terms to the left:
(9x^2-7x+5)-(12x^2-5x-6)-()=0
We add all the numbers together, and all the variables
(9x^2-7x+5)-(12x^2-5x-6)=0
We get rid of parentheses
9x^2-12x^2-7x+5x+5+6=0
We add all the numbers together, and all the variables
-3x^2-2x+11=0
a = -3; b = -2; c = +11;
Δ = b2-4ac
Δ = -22-4·(-3)·11
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{34}}{2*-3}=\frac{2-2\sqrt{34}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{34}}{2*-3}=\frac{2+2\sqrt{34}}{-6} $

See similar equations:

| -148=64q | | 10v−5v=15 | | -144=64q | | x-4/5=1/5 | | y=75(2) | | x+8/5=1/5 | | 5x-7=14x | | 2^n=6000 | | 8x+797=837 | | 1/2^x+3x+8=0 | | -u=9 | | 6x+15=2x+27 | | -6b=−18 | | 222=-v+75 | | 4x-(3(2x-1))=7x-42 | | 103-u=254 | | 2w−w=3 | | -v+216=151 | | 4=-z/5=8 | | 16n+4n=20 | | -2x+6=-4−2x+14 | | n-5=(3n+1)/2 | | 3x−12=3 | | -19=2/3x-9 | | 0.3=(2x+10) | | −9=18s | | 7e+5=6e-4 | | 7.2•10^y=3.9 | | 3m/5=-7 | | 5m+20=180 | | 3c-4=25 | | x+8=3x-7 |

Equations solver categories